logo

激光微加工在精密电子领域的应用

当下,激光技术日益成熟,应用领域也愈发广泛。日前昆山允可精密工业技术有限公司副总经理朱希文先生在一次行业论坛上,为大家介绍了电子器械领域的激光微加工系统解决方案。

传统加工工艺的优势与不足

据了解,昆山允可电子器械激光微加工系统解决方案主要分为三大部分,一是激光切割机,二是配套的激光打标机,三是配套的激光焊接机。对激光微加工设备的需求,主要还是在于电子器械的结构特点。一方面电子器械有形状多样,材料多样,结构比较复杂,另一方面,它的管壁比较薄,加工精度比较高的要求。

典型案例包括SMT模板、笔记本电脑的外壳壳体、手机后盖、触控笔馆、电子烟管、介质饮料吸管、汽车阀芯、阀芯管、散热管、电子管等产品。目前,传统的加工工艺如车削、铣削、磨削、线切割、冲压、高速钻、化学蚀刻、注塑成型、MIM工艺、3D打印等,各具优势,也各有不足。

如车削,它架构材料的品种非常的广泛,它表面加工质量好,加工成本适中,但是它不适合加工薄壁。铣削、磨削也是如此。线切割的表面真的也非常的好,但是加工效率低。冲压的效率非常高,成本也比较低,加工的形状也比较好,但是它的加工的冲压边缘的毛刺以及它的指示精确度相对是比较低。化学蚀刻的效率很高,但是最关键就是说它的环保问题,是现在各个层次日益突出的一个要求。近几年深圳对环保要求非常严格,所以很多从事化学蚀刻的工厂都往外搬,这就是电子器械架构存在的一些主要问题。

而激光技术在精密薄壁件精细加工领域,则具有与传统机加工工艺互补性强的特点,成为市场需求越来越广阔的新工艺。

激光切割工艺原理及影响因素

激光在中国从开始应用到现在大概近30年,用了各种各样不同的激光设备。激光切割的工艺原理是激光切割过程是激光从激光器中打出,经过光路传输系统并通过激光切割头最终聚焦在原材料的表面,同时将一定压力的辅助气体(如氧气、压缩空气、氮气、氩气等)吹在激光与材质作用区域,用于去除切口的碎渣并冷却激光作用区。

切割质量主要是看切割尺寸精度的高低和切割表面质量的好坏,切割表面质量包括:切口宽度、切口表面粗糙度、热影响区的宽度、切口断面的波纹以及切口断面或下表面挂渣情况。

影响切割质量的因素很多,主要因素可以分为三类:一是被加工工件特性;二是机器本身的性能(机械系统精度、工作台的振动等)和光学系统的影响(波长、输出功率、频率、脉宽、电流、光束模式、光束形状、直径、发散角、焦距、焦点位置、焦深、光斑直径等);三是加工工艺参数(材料的进给速度、精度,辅助气体参数,喷嘴的形状和孔尺寸,激光切割路径的设置等)。

版权声明:
《工业激光应用》网站的一切内容及解释权皆归《工业激光应用》杂志社版权所有,未经书面同意不得转载,违者必究!
《工业激光应用》杂志社。
调查问卷期刊订阅