激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。硬度大、熔点高的材料传统的加工方法已不能满足某些工艺要求。这一类的加工任务用常规机械加工方法很困难,有时甚至是不可能的,而用激光打孔则不难实现。
激光打孔是利用高功率密度激光束照射被加工材料,使材料很快被加热至汽化温度,蒸发形成孔洞。激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。它在激光加工中归类于激光去除,也叫蒸发加工。
激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求。常规的机械加工方法很难,有时甚至是不可能的,而用激光打孔则不难实现。
紫外激光器是很多工业领域中各种PCB材料应用的最佳选择,从生产最基本的电路板,电路布线,到生产袖珍型嵌入式芯片等高级工艺都通用。这一材料的差异性使得紫外激光器成为了很多工业领域中各种PCB材料应用的最佳选择,从生产最基本的电路板,电路布线,到生产袖珍型嵌入式芯片等高级工艺都通用。
孔径尺寸控制 采用小的发散角的激光器(0.001~0.003rad),缩短焦距或降低输出能量可获得小的孔径。对于熔点高。导热性好的材料可实现孔径0.01~1mm的微小孔加工,最小孔径可达0.001mm。
激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求。常规的机械加工方法很难,有时甚至是不可能的,而用激光打孔则不难实现。
一氧化碳(CO)激光器与广泛使用的二氧化碳(CO2)激光器类似,都是以气体作为工作介质产生激光输出。CO激光器主要应用于科研和医疗方面,直到最近才在工业应用上崭露头角。本文重点关注CO激光器在微电子制造业发挥重要作用的潜力,尤其是针对40μm以下的PCB微孔钻孔和正在发展的激光硅片剥离领域。
激光切割工艺中打孔是非常重要的环节,是整个切割的第一道工序,打孔是否成功对激光切割效果至关紧要。含碳钢材在打孔过程经常会遇到剧烈溅射现象产生,对我们激光切割加工造成较大困扰。
由于使用了灵活的激光光束来扫描,甚至非圆形且具有复杂外形的小孔都可以得到。在制造尺寸很小的孔的方面,已经有一系列非接触、无摩擦的技术,它们使用了紧密聚焦的光束,这些技术已经在微电子制造工艺和发动机零件的制造中建立了一定地位。如果小孔必须是圆锥形,将遇到特别的困难,因为在打孔方向上直径不断在增加。
医用导管是用于医疗的管状橡胶制品,分为外用和内用两种类型,常见于各种气体、液体输送、如诊听器胶管、输液胶管等。目前医用导管所用的材料是硅胶,表面光滑、无毒、无味、耐消毒;即便如此,医用导管的加工过程还是非常的严格。
激光打孔的过程是激光和物质相互作用的极其复杂的热物理过程。因此,影响激光打孔质量的因素很多。为了获得高质量的孔,应根据激光打孔的一般原理和特点,对影响打孔质量的参数进行分析和了解。